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Abstract

A fast multigrid solver for the steady incom-

pressible Euler equations is presented. Unlike time-

marching schemes, this approach uses relaxation of

the steady equations. Application of this method

results in a discretization that correctly distin-

guishes between the advection and elliptic parts

of the operator, allowing e�cient smoothers to be

constructed. Solvers for both unstructured trian-

gular grids and structured quadrilateral grids have

been written. Computations for channel ow and

ow over a nonlifting airfoil have computed. Us-

ing Gauss-Seidel relaxation ordered in the ow di-

rection, textbook multigrid convergence rates of

nearly one order-of-magnitude residual reduction

per multigrid cycle are achieved, independent of the

grid spacing. This approach also may be applied to

the compressible Euler equations and the incom-

pressible Navier-Stokes equations.

Introduction

One of the critical needs in computational uid dy-
namics is faster ow solvers. Multigrid is a well known
method of convergence acceleration which is widely used
in Euler and Reynolds-averaged Navier-Stokes codes.
These applications of multigrid generally are based on
the unsteady equations using some temporal integrator
as the smoother, combined with a full-approximation
scheme (FAS) multigrid iteration. A common approach

is one originally proposed by Jameson1. Starting with
the unsteady equations, a �nite-volume spatial dis-
cretization with explicit arti�cial viscosity is combined
with a Runge-Kutta time integration as a smoother. An

alternative approach2; 3; 4 is to use upwind-di�erencing
and implicit time integration as the smoother. However,
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these approaches have resulted in poor multigrid e�-
ciency. When applied to high Reynolds number ows
over complex geometries, convergence rates are often
worse than 0.99. There is clearly a need to develop sub-
stantially more e�cient multigrid solvers.

According to Brandt5, one of the major obstacles
to achieving better multigrid performance for advection
dominated ows is that the coarse grid provides only a
fraction of the needed correction for smooth error com-
ponents. This obstacle can be removed by designing a
solver that e�ectively distinguishes between the elliptic,
parabolic, and hyperbolic (advection) factors of the sys-
tem and treats each one appropriately. For instance,
advection can be treated by space marching, while el-
liptic factors can be treated by multigrid. The e�-
ciency of such an algorithm will be essentially identi-
cal to that of the solver for the elliptic factor only, and
thereby attain so-called \textbook" multigrid e�ciency.
Brandt presents an approach called \distributive relax-
ation" by which one can construct smoothers that ef-
fectively distinguish between the di�erent factors of the
operator. Using this approach, Brandt and Yavneh have
demonstrated textbook multigrid for the incompressible

Navier-Stokes equations6. Their results are for a simple
geometry and a Cartesian grid, using a staggered-grid
discretization of the equations.

In a closely related approach, Ta'asan7 presents a fast
multigrid solver for the compressible Euler equations.
This method is based on a set of \canonical variables"
which express the steady Euler equations in terms of an

elliptic and a hyperbolic partition8. Ta'asan uses this
partition to guide the discretization of the equations. A
staggered grid is used, with di�erent variables residing at
cell, vertex, and edge centers. In Reference 7 it is shown
that ideal multigrid e�ciency can be achieved for the
compressible Euler equations for two-dimensional sub-
sonic ow using body-�tted grids. One possible limita-
tion of the use of canonical variables is that the partition
of the inviscid equations is not directly applicable to the
viscous equations.
In this paper, an alternative to distributive relax-

ation and to Ta'asan's canonical variable decomposi-
tion is presented. It is a generalization of the approach
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of Sidilkover and Ascher9, and is described in detail

by Sidilkover10 . This approach can be classi�ed as a

method of the Weighted Gauss-Seidel type5. A con-
ventional vertex-based �nite-volume or �nite-di�erence
discretization of the primitive variables is used, avoid-
ing the need for staggered grids. This simpli�es the re-
striction and prolongation operations, because the same
operator can be used for all variables. A projection op-
erator is applied to the system of equations, resulting
in a Poisson equation for the pressure. By applying the
projection operator to the discrete equations rather than
to the di�erential equations, the proper boundary con-
dition on the pressure is satis�ed directly. The Poisson
equation for the pressure may be treated by Gauss-Seidel
relaxation, while the advection terms of the momentum
equation are treated by space-marching. Because the el-
liptic and advection parts of the system are decoupled,
ideal multigrid e�ciency can be achieved. Compared to
distributive relaxation and the canonical variables ap-
proaches, this method is extremely simple.

Formulation of the Problem

The incompressible Euler equations in primitive vari-
ables are

uux + vuy + px = 0;

uvx + vvy + py = 0;

ux + vy = 0;

where u and v are the components of the velocity in
the x and y directions, respectively, and p is the pressure.
The density is taken to be one. The advection operator
is de�ned by

Q � u@x + v@y; (1)

where @x, @y are the partial di�erentiation operators.
The Euler equations may be written as

Lq =

0
@Q 0 @x
0 Q @y
@x @y 0

1
A
0
@uv
p

1
A = 0: (2)

Introducing the adjoint to Q, de�ned by

Q
�(f) � �@x(uf)� @y(vf); (3)

a projection operator P is de�ned:

P =

0
@ I 0 0

0 I 0
@x @y Q�

1
A : (4)

Applying the projection operator to the Euler equations
yields

~Lq � PLq =

0
@Q 0 @x
0 Q @y
0 0 �

1
A
0
@uv
p

1
A+ s:p:t:; (5)

where � is the Laplacian. The matrix operator on
the right-hand side consists of the principal part of ~L,

and \s.p.t." are the subprincipal terms, in the termi-

nology of Brandt5. These terms arise because the co-
e�cients u and v in the operators Q and Q� are not
constant. It is important to note that the subprincipal
terms can be ignored for the purpose of constructing a
relaxation scheme.
A feature of Eq. (5) is that the correct boundary con-

dition for the pressure at a solid wall is an automatic
result of the tangency boundary condition on the veloc-
ity. The equation for the pressure at the wall reduces
to

(�u@yv+ v@yu+ @xp)n̂x

+ (u@xv � v@xu+ @yp)n̂y = 0; (6)

where n̂x, n̂y are the components of the unit normal
at the wall. Because the normal component of veloc-
ity, un̂x + vn̂y, is zero, it can be shown that Eq. (6)
reduces to the momentum equation in the normal direc-
tion. No auxiliary boundary condition on the pressure
is needed.
The operator on the left-hand side of Eq. (5) is up-

per triangular. The pressure satis�es a Poisson equa-
tion for which a conventional relaxation method, such
as Gauss-Seidel, can be applied. Upwind di�erencing of
the advection operator in the momentum equations al-
lows downstream relaxation to be used. The strategy
used to relax the system is to �rst update the pressure.
The pressure update contributes to the velocity update
through the gradient terms in the right-hand column of
the operator in Eq. (5). Finally, the velocity components
are updated by relaxing in the stream direction.

Solution Procedure

Rather than discretizing Eq. (5) directly, the �rst
step of numerical solution procedure is to discretize
Eq. (2). The relaxation scheme is constructed by
applying the projection operator P at the discrete
level rather than the di�erential level. A sequence of
grids GK;GK�1; : : : ;G0 is used, where GK is the �nest
and G0 the coarsest. Let ~Lk be the discrete approxima-
tion to the operator ~L and qk be the solution on the k-th
grid. This system has the form ~Lkqk = fk, where the en-
tries of ~Lk are 3�3 block matrices which operate on the
unknowns (u; v; p)T at each grid vertex. A general iter-
ation scheme is constructed by writing the operator ~Lk

as ~Lk = Mk �Nk, where the splitting is chosen such
that Mk is easily inverted. Lexicographic Gauss-Seidel
is obtained by takingMk to be the block lower-triangular
matrix resulting from ignoring the blocks above the di-
agonal of ~Lk. A further simpli�cation is obtained if the
diagonal blocks of Mk contain only those entries corre-
sponding to the principal part of the operator. Because
the operator in Eq. (5) is upper triangular, the diagonal
blocks will then be 3 � 3 upper triangular matrices.
Letting qnk be the n-th iterate of the solution, the

iteration is

Mkq
n+1
k = fk +Nkq

n
k :
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Because the operator ~Lk is nonlinear, Mk and Nk will
be functions of qnk and qn+1k

. Letting �qnk � q
n+1

k
� qnk ,

the iteration may be rewritten as

Mk�q
n
k = fk � ~Lkq

n
k : (7)

Because Mk is block lower-triangular, �qnk is found by
forward substitution and inverting a 3�3 diagonal block
at each vertex. The diagonal blocks are upper triangular
and are easily inverted.
If upwind di�erences are used for the advection op-

erator (1) and the grid points are ordered in the ow
direction, then the 3 � 3 blocks of Nk will have zeroes
in the �rst two rows. In this case, lexicographic Gauss-
Seidel relaxation is equivalent to space-marching of the
advection terms. The advected error is e�ectively elimi-
nated in one relaxation sweep and the convergence rate
becomes that of the Poisson equation for the pressure. It
is possible to get ideal multigrid convergence rates for the
system because each component of the error is treated
appropriately.
A straightforward FAS multigrid iteration is applied

to the system of equations. Let ~Lk�1 be the coarse grid
operator, Ikk�1 be the �ne-to-coarse grid restriction op-
erator, and Ik�1k be the coarse-to-�ne grid prolongation
operator. If q̂k is the current solution on grid k, the
residual on this grid is rk � fk� ~Lkq̂k . This leads to the
coarse-grid equation

~Lk�1qk�1 = fk�1 = I
k
k�1rk + ~Lk�1

�
I
k
k�1q̂k

�
: (8)

After solving the coarse-grid equation for qk�1, the �ne-
grid solution is corrected by

qk  q̂k + I
k�1
k

�
qk�1 � I

k
k�1q̂k

�
: (9)

Equation (8) is solved by applying the same relaxation
procedure that is used to solve the �ne-grid equation.
Multigrid is applied recursively to the coarse-grid equa-
tion. On the coarsest grid, many relaxation sweeps are
performed to insure that the equation is solved com-
pletely. A conventional V{cycle or W{cycle is used.

Results

Two ow solvers have been written to implement the
solution algorithm presented in the previous section.
One is an unstructured grid code based on triangular
elements. The program is a modi�cation of the �nite-

volume code FUN2D
11; 12. The discretization of the mo-

mentum equations uses the advection scheme proposed

by Giles, et al.13 The residuals of the momentum equa-
tions are computed by a trapezoidal rule integration
around each triangle of the grid. These residuals are dis-
tributed to the nodes of the triangle using upwind-biased
weights that depend on the local ow direction. One can
think of this as a rotated-di�erence stencil. The Poisson
equation for the pressure is discretized using a standard
central-di�erence approximation for the Laplacian.
The other code is a structured, quadrilateral grid

solver. A cell-vertex, �nite-volume method is used at

A B

CD

F

E

Figure 1. Stencil for structured quadrilateral grid.

~u

~u � n̂ = 0

~u � n̂ = 0

p

` = 1

length = 3

height = 1ow

Figure 2. Channel geometry.

each grid point. The �nite-volume cell associated with
each vertex of the grid is the corresponding dual grid cell,
as shown in Fig. 1. For vertex E the dual cell is ABCD.
The advection terms are discretized by a conventional
one-sided, second-order di�erence approximation. The
gradients of u, v, and p appearing in the pressure Pois-
son equation are computed by applying Green's theorem.
The gradient on the cell face CD of Fig. 1 is computed
by integrating around the path ECFD. Derivatives of
these gradients are also evaluated by Green's theorem.
This approach yields the standard �ve-point approxima-
tion to the Laplacian operator on a uniform grid.

Solutions for incompressible, inviscid ow in a channel
have been obtained with both solvers. The channel ge-
ometry and boundary conditions are shown in Fig. 2.
The shape of the lower wall between 0 � x � 1 is
y(x) = � sin2 �x. For the computations shown here, the
thickness ratio � is 0.05. The velocity is speci�ed at the
inlet and the pressure is speci�ed at the outlet. At the
upper and lower walls of the channel, the ow tangency
condition ~u�n̂ = 0 is enforced.

Similar grids were used for both ow solvers. Quasi-
uniform quadrilateral grids were generated. A simple
shearing transformation was used in the center part of
the channel to get boundary conforming grids. For the
unstructured grid solver, the grids were triangulated by
dividing each quadrilateral cell along a diagonal. A series
of nested coarse grids was obtained by coarsening the �ne
grids by a factor of two in each coordinate direction. In
all cases shown below, the coarsest grid was 7�3 vertices.
Lexicographic Gauss-Seidel relaxation was used. The or-
dering of the grid vertices was from the lower-left to the
upper-right of the channel, resulting in downstream re-
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laxation of the advection operator. A V (2; 1) multigrid
cycle was used; that is, two relaxation sweeps were per-
formed on each grid before restricting to the coarse grid,
and one relaxation sweep was performed after the coarse-
grid correction was added to the �ne-grid solution. If one
work unit is taken to be a single Gauss-Seidel sweep on
the �nest grid, a single V (2; 1) cycle is approximately
4 work units.
The computed pressure obtained by the unstructured

grid ow solver on a grid of 97� 33 vertices is shown in
Fig. 3. A total of 5 grid levels was used. The L1 norm of
the residual of each equation for each cycle is shown in
Fig. 4. The convergence rate is approximately 0.18 per

Figure 3. Pressure, contour increment �p = 0:01,
for an unstructured grid of 97� 33 vertices.

multigrid cycle. For Gauss-Seidel relaxation applied to
the Laplace equation, one can expect an optimum rate
of 0.125 for a V (2; 1) multigrid cycle if the restriction
and prolongation operators are perfect, so the current
scheme gives very nearly the optimum rate. Also the
convergence shows no sign of stalling but continues at a
uniform rate. Changing to a W{cycle resulted in some
improvement to the convergence rate per cycle, but re-
quired more work overall. (In two dimensions, aW{cycle
is about 50% more work than a V{cycle.)
Very similar results were obtained by the structured

grid ow solver as shown in Figs. 5 and 6. The conver-
gence rate of the structured grid code is 0.15 per multi-
grid cycle, slightly better than that of the unstructured
grid code and very close to the optimal rate. The better
performance of the structured grid solver is most likely
because of better restriction and prolongation operators;

Figure 4. Convergence history, unstructured grid
of 97� 33 vertices.

Figure 5. Pressure, contour increment �p = 0:01,
for a structured grid of 97� 33 vertices.

Figure 6. Convergence history, structured grid
of 97� 33 vertices.

the unstructured ow solver performs bilinear interpola-
tion using only the locations of a �ne-grid vertex and
the three vertices of the coarse-grid cell containing that
vertex.

The present scheme also shows ideal multigrid conver-
gence independent of the grid spacing. In Fig. 7, the L1
norm of the pressure residual is shown for the unstruc-
tured grid ow solver on a 49 � 17 �ne grid using 4 grid
levels, up to a 385 � 129 �ne grid using 7 grid levels. A
similar comparison for the structured grid ow solver is
shown in Fig. 8. This shows that convergence is achieved
in order n operations.

Figure 7. Comparison of convergence rates on un-
structured grids.
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Figure 8. Comparison of convergence rates on struc-
tured grids.

Figure 9. Shear ow, u-component of velocity,
contour increment �u = 0:01, unstructured grid
of 97� 33 vertices.

The ows shown so far are irrotational. To demon-
strate that the multigrid performance does not degrade
if vorticity is present, a solution for a shear ow in a
channel was obtained. The unstructured grid ow solver
was used for this computation. A linear shear was speci-
�ed at the inlet; the velocity was u(y) = (1+y)=2, v = 0.
The initial condition was a uniform ow in the channel.
This insured that the vorticity would be introduced into
the channel only by the relaxation. The u-velocity com-
ponent is shown in Fig. 9 and the pressure is shown in
Fig. 10. The convergence rate shown in Fig. 11 is seen
to be essentially the same as in Fig. 4.

All the calculations shown so far were based on a series
of nested grids: each coarse-grid vertex corresponds to a
vertex on the next �ner grid. For complex geometries it
may not practical to generate a series of nested unstruc-
tured grids, and the performance of the multigrid solver
may be expected to deteriorate. To show the robust-

Figure 10. Shear ow, pressure, contour increment
�p = 0:01, unstructured grid of 97� 33 vertices.

Figure 11. Convergence rate, shear ow in a channel,
unstructured grid of 97� 33 vertices.

Figure 12. Grid generated by perturbing the vertices
of the 49� 17 grid.

ness of the current method, the triangular grid solver
was run for a series of non-nested coarse grids. These
were generated by randomly perturbing the locations of
the vertices on each of the nested grids independently.
The perturbed 49 � 17 grid is shown in Fig. 12. The
computed pressure on a perturbed 97� 33 �ne grid with
5 grid levels is shown in Fig. 13 and the convergence
rate is shown in Fig. 14. The pressure contours are
very smooth, showing no sign of the lack of grid smooth-
ness. The asymptotic convergence rate has deteriorated
to a still-respectable 0:24 per cycle.

Solutions for incompressible, inviscid, nonlifting ow
over a K�arm�an-Tre�tz airfoil have been obtained with
the structured grid solver. A cylinder is mapped into a
K�arm�an-Tre�tz airfoil using the conformal mapping

z � 2

z + 2
=

�
� � 1

� + 1

�2��
;

Figure 13. Pressure, contour increment �p = 0:01,
randomly perturbed unstructured grid of 97�33 ver-
tices.
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Figure 14. Convergence rate, randomly perturbed
unstructured grid of 97 � 33 vertices, 5 grid levels,
V (2; 1) cycle.

where z is the coordinate in the transformed plane, � is
the coordinate in the circle plane, and � is the trailing-
edge angle divided by �. A trailing-edge angle of 10� is
used, resulting in an airfoil of approximately 15% thick-
ness. The airfoil ow is solved on a �nite domain. At
inow points along the outer boundary the total pres-
sure and ow inclination angle are speci�ed. For outow
points the pressure is speci�ed. The speci�ed quantities
are determined from the complex potential function for
ow past the airfoil. On the airfoil surface the tangency
condition is enforced.

A �ne grid for the airfoil calculation was constructed
by generating an O-grid with unit aspect ratio cells in
the circle plane and mapping it to the airfoil plane. The
outer boundary of the domain was roughly 13 chords
from the airfoil. The coarsest grid in the grid sequence
used for the multigrid solver contains 12 � 6 cells. On
each grid, relaxation was performed along radial grid
lines, sweeping from the inow boundary to the airfoil
surface over the forward half of the domain, and from the
airfoil to the outow boundary over the rearward half
of the domain. Each sweep started along the stagnation
streamline, proceeded over the upper half of the domain,
and then over the lower half of the domain.

Comparisons between computed and analytic sur-
face pressure coe�cients for nonlifting ow around the
K�arm�an-Tre�tz airfoil are shown in Figs. 15 and 16.
A W (2; 1) multigrid cycle was used for these computa-
tions. The computed surface pressure distribution for
the 97 � 49 grid is in fairly good agreement with the
analytic one. There are small di�erences near the lead-
ing edge and there is the usual di�culty in computing
full pressure recovery at the trailing edge of the airfoil.
Note that there is no clustering of the grid in these re-
gions, which exacerbates the problem. The solution on
the 193 � 97 grid is in excellent agreement with the
analytic one, again except for the pressure recovery at
the trailing edge. The computed pressure contours for
the 193 � 97 are shown in Fig. 17.

The convergence history for the 193 � 97 grid is pre-

Figure 15. Pressure coe�cient, nonlifting K�arm�an-
Tre�tz airfoil, 97� 49 grid.

Figure 16. Surface pressure coe�cient, nonlifting
K�arm�an-Tre�tz airfoil, 193� 97 grid.

sented in Fig. 18. The L1 norm of the residuals for all
three equations is shown. The average rate of reduction
of the residual is 0.12 per W (2; 1). A comparison of the
convergence rates of the pressure residual for three grid
densities is shown in Fig. 19. A slight deterioration of
the convergence rate with increasing grid re�nement is
observed: on the 385� 197 grid, the rate is 0.15 per cy-
cles. Nevertheless, as with the channel ow results, the
convergence rates are very nearly grid independent.

Extension to Compressible Flow

The general approach outlined here may be readily ex-
tended to the compressible Euler equation. In primitive
variables the equations are

Lq =

0
BB@
Q 0 0 0
0 �Q 0 @x
0 0 �Q @y
0 �@x �@y

1

c2
Q

1
CCA

0
BB@
s

u

v

p

1
CCA = 0: (10)
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Figure 17. Pressure coe�cient contours, nonlifting
K�arm�an-Tre�tz airfoil, 193� 97 grid.

Figure 18. Convergence history, nonlifting K�arm�an-
Tre�tz airfoil, 193� 97 vertices.

where � is the density, c is the speed of sound, and s is
the entropy. The projection operator P for this system
is

P =

0
BB@
I 0 0 0
0 I 0 0
0 0 I 0
0 @x @y Q�

1
CCA : (11)

The operators Q and Q� are de�ned as in Eqs. (1)
and (3). Applying this to Eq. (10) and ignoring the
subprincipal terms as before yields

PLq =

0
BB@
Q 0 0 0
0 �Q 0 @x
0 0 �Q @y
0 0 0 ��M2@2s

1
CCA

0
BB@
s

u

v

p

1
CCA+ s:p:t:;

(12)

whereM is the Mach number and @s is the partial deriva-
tive in the streamwise direction.
The most signi�cant di�erence between the compress-

ible and the incompressible equations is that a Prandtl-
Glauert-like operator acts on the pressure. Note that

Figure 19. Comparison of convergence rates for non-
lifting K�arm�an-Tre�tz airfoil.

this system approaches the system for the incompressible
equations in the limit of vanishing Mach number. For
subsonic ow the compressible equations can be solved
by the same relaxation scheme as the incompressible
equations.

Although Eq. (10) is written in primitive variables,
it is straightforward to use a conservative, �nite-volume
discretization of the system of equations. To relax the
system, a transformation to primitive variables is made
to compute the update of the solution values. For
transonic ows with shocks a stable discretization can
be achieved using the multidimensional high-resolution

scheme developed by Sidilkover14 .

Conclusions

Amultigrid algorithm which yields textbook multigrid
e�ciency for the steady Euler equations has been devel-
oped. It has the virtue of simplicity; conventional �nite-
di�erence or �nite-volume discretizations of the govern-
ing equations may be used, allowing exibility in the
choice of the underlying numerical method. The correct
boundary condition for the pressure equation is obtained
directly. Unlike time-marching approaches, the speed of
the method does not degrade for low-speed ows, and
the correct incompressible limit is recovered. Finally,
this method can be applied to incompressible, viscous

ow following the ideas of Sidilkover and Ascher9.
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